Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430548

RESUMO

Macroautophagy is often quantified by live imaging of autophagosomes labeled with fluorescently tagged ATG8 protein (FP-ATG8) in Arabidopsis thaliana. The labeled particles are then counted in single focal planes. This approach may lead to inaccurate results as the actual 3D distribution of autophagosomes is not taken into account and appropriate sampling in the Z-direction is not performed. To overcome this issue, we developed a workflow consisting of immunolabeling of autophagosomes with an anti-ATG8 antibody followed by stereological image analysis using the optical disector and the Cavalieri principle. Our protocol specifically recognized autophagosomes in epidermal cells of Arabidopsis root. Since the anti-ATG8 antibody recognizes multiple AtATG8 isoforms, we were able to detect a higher number of immunolabeled autophagosomes than with the FP-AtATG8e marker, that most likely does not recognize all autophagosomes in a cell. The number of autophagosomes per tissue volume correlated with the intensity of autophagy induction. Compared to the quantification of autophagosomes in maximum intensity projections, stereological methods were able to detect the autophagosomes present in a given volume with higher accuracy. Our novel workflow provides a powerful toolkit for unbiased and reproducible quantification of autophagosomes and offers a convenient alternative to the standard of live imaging with FP-ATG8 markers.

2.
Plants (Basel) ; 12(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37896049

RESUMO

Brassinosteroids (BRs) are key phytohormones involved in the regulation of major processes of cell metabolism that guide plant growth. In the past decades, new evidence has made it clear that BRs also play a key role in the orchestration of plant responses to many abiotic and biotic stresses. In the present work, we analyzed the impact of foliar treatment with 24-epicastasterone (ECS) on the endogenous content of major phytohormones (auxins, salicylic acid, jasmonic acid, and abscisic acid) and their intermediates in soybean leaves 7 days following the treatment. Changes in the endogenous content of phytohormones have been identified and quantified by LC/MS. The obtained results point to a clear role of ECS in the upregulation of auxin content (indole-3-acetic acid, IAA) and downregulation of salicylic, jasmonic, and abscisic acid levels. These data confirm that under optimal conditions, ECS in tested concentrations of 0.25 µM and 1 µM might promote growth in soybeans by inducing auxin contents. Benzoic acid (a precursor of salicylic acid (SA)), but not SA itself, has also been highly accumulated under ECS treatment, which indicates an activation of the adaptation strategies of cell metabolism to possible environmental challenges.

3.
Int J Mol Sci ; 23(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35328648

RESUMO

Cells sense a variety of extracellular signals balancing their metabolism and physiology according to changing growth conditions. Plasma membranes are the outermost informational barriers that render cells sensitive to regulatory inputs. Membranes are composed of different types of lipids that play not only structural but also informational roles. Hormones and other regulators are sensed by specific receptors leading to the activation of lipid metabolizing enzymes. These enzymes generate lipid second messengers. Among them, phosphatidic acid (PA) is a well-known intracellular messenger that regulates various cellular processes. This lipid affects the functional properties of cell membranes and binds to specific target proteins leading to either genomic (affecting transcriptome) or non-genomic responses. The subsequent biochemical, cellular and physiological reactions regulate plant growth, development and stress tolerance. In the present review, we focus on primary (genome-independent) signaling events triggered by rapid PA accumulation in plant cells and describe the functional role of PA in mediating response to hormones and hormone-like regulators. The contributions of individual lipid signaling enzymes to the formation of PA by specific stimuli are also discussed. We provide an overview of the current state of knowledge and future perspectives needed to decipher the mode of action of PA in the regulation of cell functions.


Assuntos
Ácidos Fosfatídicos , Fosfolipase D , Hormônios/metabolismo , Ácidos Fosfatídicos/metabolismo , Fosfolipase D/metabolismo , Desenvolvimento Vegetal , Proteínas de Plantas/genética , Plantas/metabolismo , Proteínas/metabolismo , Transdução de Sinais/fisiologia
4.
Biotechnol Adv ; 58: 107929, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35189273

RESUMO

Within the past decades, nanoparticles (NPs) have become common components of electronics, batteries, cosmetics, clothing, and even dietary supplements. Despite their undisputed advantages consisting in the possibility of engineering their novel physical, thermal, optical, and biological properties, safety questions arise concerning their wide exploitation. NPs interact with living organisms, which can interfere with essential life processes. The aim of this paper is to critically review the current literature dealing with noble metals' NPs (NM-NPs) and their effects on plants and associated microorganisms. Particular attention has been given to the less studied NPs of platinum group elements, which can be considered a neglected pollutant, since they are released from vehicles' catalysts. In addition, we have provided a comprehensive overview of the biotechnology exploitation of NM-NPs in plant cultivation, where prospective nanomaterials developed as nanofertilizers and nanopesticides are introduced, and both the pros and the cons of nanomaterial plant treatments have been discussed.


Assuntos
Nanopartículas Metálicas , Agricultura , Biotecnologia , Plantas , Estudos Prospectivos
5.
Front Plant Sci ; 12: 770794, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899793

RESUMO

Magnesium (Mg2+) is a macronutrient involved in essential cellular processes. Its deficiency or excess is a stress factor for plants, seriously affecting their growth and development and therefore, its accurate regulation is essential. Recently, we discovered that phospholipase Dα1 (PLDα1) activity is vital in the stress response to high-magnesium conditions in Arabidopsis roots. This study shows that PLDα1 acts as a negative regulator of high-Mg2+-induced leaf senescence in Arabidopsis. The level of phosphatidic acid produced by PLDα1 and the amount of PLDα1 in the leaves increase in plants treated with high Mg2+. A knockout mutant of PLDα1 (pldα1-1), exhibits premature leaf senescence under high-Mg2+ conditions. In pldα1-1 plants, higher accumulation of abscisic and jasmonic acid (JA) and impaired magnesium, potassium and phosphate homeostasis were observed under high-Mg2+ conditions. High Mg2+ also led to an increase of starch and proline content in Arabidopsis plants. While the starch content was higher in pldα1-1 plants, proline content was significantly lower in pldα1-1 compared with wild type plants. Our results show that PLDα1 is essential for Arabidopsis plants to cope with the pleiotropic effects of high-Mg2+ stress and delay the leaf senescence.

6.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808421

RESUMO

Brassinosteroids (BRs) are plant hormones of steroid nature, regulating various developmental and adaptive processes. The perception, transport, and signaling of BRs are actively studied nowadays via a wide range of biochemical and genetic tools. However, most of the knowledge about BRs intracellular localization and turnover relies on the visualization of the receptors or cellular compartments using dyes or fluorescent protein fusions. We have previously synthesized a conjugate of epibrassinolide with green fluorescent dye BODIPY (eBL-BODIPY). Here we present a detailed assessment of the compound bioactivity and its suitability as probe for in vivo visualization of BRs. We show that eBL-BODIPY rapidly penetrates epidermal cells of Arabidopsis thaliana roots and after long exposure causes physiological and transcriptomic responses similar to the natural hormone.


Assuntos
Compostos de Boro/química , Brassinosteroides/química , Corantes Fluorescentes/química , Esteroides Heterocíclicos/química , Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais
7.
Plant Cell Environ ; 43(10): 2460-2475, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32583878

RESUMO

Intracellular levels of Mg2+ are tightly regulated, as Mg2+ deficiency or excess affects normal plant growth and development. In Arabidopsis, we determined that phospholipase Dα1 (PLDα1) is involved in the stress response to high-magnesium conditions. The T-DNA insertion mutant pldα1 is hypersensitive to increased concentrations of magnesium, exhibiting reduced primary root length and fresh weight. PLDα1 activity increases rapidly after high-Mg2+ treatment, and this increase was found to be dose dependent. Two lines harbouring mutations in the HKD motif, which is essential for PLDα1 activity, displayed the same high-Mg2+ hypersensitivity of pldα1 plants. Moreover, we show that high concentrations of Mg2+ disrupt K+ homeostasis, and that transcription of K+ homeostasis-related genes CIPK9 and HAK5 is impaired in pldα1. Additionally, we found that the akt1, hak5 double mutant is hypersensitive to high-Mg2+ . We conclude that in Arabidopsis, the enzyme activity of PLDα1 is vital in the response to high-Mg2+ conditions, and that PLDα1 mediates this response partially through regulation of K+ homeostasis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Magnésio/metabolismo , Fosfolipase D/metabolismo , Potássio/metabolismo , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/fisiologia , Western Blotting , Homeostase , Fosfolipase D/fisiologia , Estresse Fisiológico , Transcriptoma
8.
Sci Rep ; 10(1): 7778, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385330

RESUMO

The plant selective autophagy cargo receptor neighbour of breast cancer 1 gene (NBR1) has been scarcely studied in the context of abiotic stress. We wanted to expand this knowledge by using Arabidopsis thaliana lines with constitutive ectopic overexpression of the AtNBR1 gene (OX lines) and the AtNBR1 Knock-Out (KO lines). Transcriptomic analysis of the shoots and roots of one representative OX line indicated differences in gene expression relative to the parental (WT) line. In shoots, many differentially expressed genes, either up- or down-regulated, were involved in responses to stimuli and stress. In roots the most significant difference was observed in a set of downregulated genes that is mainly related to translation and formation of ribonucleoprotein complexes. The link between AtNBR1 overexpression and abscisic acid (ABA) signalling was suggested by an interaction network analysis of these differentially expressed genes. Most hubs of this network were associated with ABA signalling. Although transcriptomic analysis suggested enhancement of ABA responses, ABA levels were unchanged in the OX shoots. Moreover, some of the phenotypes of the OX (delayed germination, increased number of closed stomata) and the KO lines (increased number of lateral root initiation sites) indicate that AtNBR1 is essential for fine-tuning of the ABA signalling pathway. The interaction of AtNBR1 with three regulatory proteins of ABA pathway (ABI3, ABI4 and ABI5) was observed in planta. It suggests that AtNBR1 might play role in maintaining the balance of ABA signalling by controlling their level and/or activity.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Autofagia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Transdução de Sinais , Regulação da Expressão Gênica de Plantas , Germinação , Plantas Geneticamente Modificadas , Plântula , Sementes/genética
9.
Plant J ; 101(3): 619-636, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31610051

RESUMO

Current models of plasma membrane (PM) postulate its organization in various nano- and micro-domains with distinct protein and lipid composition. While metazoan PM nanodomains usually display high lateral mobility, the dynamics of plant nanodomains is often highly spatially restricted. Here we have focused on the determination of the PM distribution in nanodomains for Arabidopsis thaliana flotillin (AtFLOT) and hypersensitive induced reaction proteins (AtHIR), previously shown to be involved in response to extracellular stimuli. Using in vivo laser scanning and spinning disc confocal microscopy in Arabidopsis thaliana we present here their nanodomain localization in various epidermal cell types. Fluorescence recovery after photobleaching (FRAP) and kymographic analysis revealed that PM-associated AtFLOTs contain significantly higher immobile fraction than AtHIRs. In addition, much lower immobile fractions have been found in tonoplast pool of AtHIR3. Although members of both groups of proteins were spatially restricted in their PM distribution by corrals co-aligning with microtubules (MTs), pharmacological treatments showed no or very low role of actin and microtubular cytoskeleton for clustering of AtFLOT and AtHIR into nanodomains. Finally, pharmacological alteration of cell wall (CW) synthesis and structure resulted in changes in lateral mobility of AtFLOT2 and AtHIR1. Accordingly, partial enzymatic CW removal increased the overall dynamics as well as individual nanodomain mobility of these two proteins. Such structural links to CW could play an important role in their correct positioning during PM communication with extracellular environment.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Membrana/metabolismo , Actinas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Parede Celular/metabolismo , Citoesqueleto/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/genética , Microscopia Confocal , Microtúbulos/metabolismo
10.
Funct Plant Biol ; 46(6): 533-542, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30940327

RESUMO

Phosphatidic acids (PAs) are a key intermediate in phospholipid biosynthesis, and a central element in numerous signalling pathways. Functions of PAs are related to their fundamental role in molecular interactions within cell membranes modifying membrane bending, budding, fission and fusion. Here we tested the hypothesis that PAs are capable of direct transport of ions across bio-membranes. We have demonstrated that PAs added to the maize plasma membrane vesicles induced ionophore-like transmembrane transport of Ca2+, H+ and Mg2+. PA-induced Ca2+ fluxes increased with an increasing PAs acyl chain unsaturation. For all the PAs analysed, the effect on Ca2+ permeability increased with increasing pH (pH 8.0>pH 7.2>pH 6.0). The PA-induced Ca2+, Mg2+ and H+ permeability was also more pronounced in the endomembrane vesicles as compared with the plasma membrane vesicles. Addition of PA to protoplasts from Arabidopsis thaliana (L.) Heynh. roots constitutively expressing aequorin triggered elevation of the cytosolic Ca2+ activity, indicating that the observed PA-dependent Ca2+ transport occurs in intact plants.


Assuntos
Cálcio , Ácidos Fosfatídicos , Equorina , Membrana Celular , Protoplastos
11.
Steroids ; 147: 28-36, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30981682

RESUMO

Using Arabidopsis thaliana wild type (WT) plants and diacylglycerol kinase knockouts (single mutants - dgk3, dgk1, dgk6; double mutants - dgk3dgk7, dgk5dgk6, dgk1dgk2) we observed that the inhibitor of brassinosteroid (BR) biosynthesis, brassinazole (BRZ), drastically decreased germination of dgk mutants under salt stress, while BRZ co-administration with 24-epibrassinolide (EBL) partially improved germination rates. We also observed a statistically significant decrease in alternative and cytochrome respiratory pathways in response to BRZ treatment under salinity conditions. We showed that production of the lipid second messenger phosphatidic acid (PA) is impaired in dgk mutants in response to EBL treatment and inhibitor of diacylglycerol kinase (DGK) - R59022. This study demonstrates that dgk mutants possess lower germination rates, lower total respiration rates, an alternative respiratory pathway and PA content under optimal and high salinity conditions in response to EBL treatment comparing to WT plants.


Assuntos
Arabidopsis/química , Diacilglicerol Quinase/deficiência , Ácidos Fosfatídicos/metabolismo , Sementes/crescimento & desenvolvimento , Arabidopsis/metabolismo , Brassinosteroides/farmacologia , Diacilglicerol Quinase/antagonistas & inibidores , Diacilglicerol Quinase/metabolismo , Ácidos Fosfatídicos/química , Salinidade , Sementes/efeitos dos fármacos , Sementes/metabolismo , Triazóis/farmacologia
12.
Mol Plant Pathol ; 20(7): 1005-1012, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30924595

RESUMO

Recognition of pathogen-associated molecular patterns (PAMPs) is crucial for plant defence against pathogen attack. The best characterized PAMP is flg22, a 22 amino acid conserved peptide from flagellin protein. In Arabidopsis thaliana, flg22 is recognized by the flagellin sensing 2 (FLS2) receptor. In this study, we focused on biotic stress responses triggered by flg22 after exposure to temporary heat stress (HS). It is important to study the reactions of plants to multiple stress conditions because plants are often exposed simultaneously to a combination of both abiotic and biotic stresses. Transient early production of reactive oxygen species (ROS) is a well-characterized response to PAMP recognition. We demonstrate the strong reduction of flg22-induced ROS production in A. thaliana after HS treatment. In addition, a decrease in FLS2 transcription and a decrease of the FLS2 presence at the plasma membrane are shown after HS. In summary, our data show the strong inhibitory effect of HS on flg22-triggered events in A. thaliana. Subsequently, temporary HS strongly decreases the resistance of A. thaliana to Pseudomonas syringae. We propose that short exposure to high temperature is a crucial abiotic stress factor that suppresses PAMP-triggered immunity, which subsequently leads to the higher susceptibility of plants to pathogens.


Assuntos
Alarminas/metabolismo , Arabidopsis/imunologia , Arabidopsis/microbiologia , Resistência à Doença/imunologia , Resposta ao Choque Térmico , Doenças das Plantas/imunologia , Imunidade Vegetal , Pseudomonas syringae/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flagelina/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Resposta ao Choque Térmico/efeitos dos fármacos , Doenças das Plantas/microbiologia , Imunidade Vegetal/efeitos dos fármacos , Pseudomonas syringae/efeitos dos fármacos , Explosão Respiratória/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
13.
Front Plant Sci ; 9: 991, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30050548

RESUMO

Arabidopsis flotillin 2 (At5g25260) belongs to the group of plant flotillins, which are not well characterized. In contrast, metazoan flotillins are well known as plasma membrane proteins associated with membrane microdomains that act as a signaling hub. The similarity of plant and metazoan flotillins, whose functions most likely consist of affecting other proteins via protein-protein interactions, determines the necessity of detecting their interacting partners in plants. Nevertheless, identifying the proteins that form complexes on the plasma membrane is a challenging task due to their low abundance and hydrophobic character. Here we present an approach for mapping Arabidopsis thaliana flotillin 2 plasma membrane interactors, based on the immunoaffinity purification of crosslinked and enriched plasma membrane proteins with mass spectrometry detection. Using this approach, 61 proteins were enriched in the AtFlot-GFP plasma membrane fraction, and 19 of them were proposed to be flotillin 2 interaction partners. Among our proposed partners of Flot2, proteins playing a role in the plant response to various biotic and abiotic stresses were detected. Additionally, the use of the split-ubiquitin yeast system helped us to confirm that plasma-membrane ATPase 1, early-responsive to dehydration stress protein 4, syntaxin-71, harpin-induced protein-like 3, hypersensitive-induced response protein 2 and two aquaporin isoforms interact with flotillin 2 directly. Based on the results of our study and the reported properties of Flot2 interactors, we propose that Flot2 complexes may be involved in plant-pathogen interactions, water transport and intracellular trafficking.

14.
Prog Lipid Res ; 71: 43-53, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29842906

RESUMO

Phosphatidic acid (PA) is a simple phospholipid observed in most organisms. PA acts as a key metabolic intermediate and a second messenger that regulates many cell activities. In plants, PA is involved in numerous cell responses induced by hormones, stress inputs and developmental processes. Interestingly, PA production can be triggered by opposite stressors, such as cold and heat, or by hormones that are considered to be antagonistic, such as abscisic acid and salicylic acid. This property questions the specificity of the responses controlled by PA. Are there generic responses to PA, meaning that cell regulation triggered by PA would be always the same, even in opposite physiological situations? Alternatively, do the responses to PA differ according to the physiological context within the cells? If so, the mechanisms that regulate the divergence of PA-controlled reactions are poorly defined. This review summarizes the latest opinions on how PA signalling is directed in plant cells and examines the intrinsic properties of PA that enable its regulatory diversity. We propose a concept whereby PA regulatory messages are perceived as complex "signatures" that take into account their production site, the availability of target proteins and the relevant cellular environments.


Assuntos
Ácidos Fosfatídicos/metabolismo , Fenômenos Fisiológicos Vegetais , Plantas/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Sítios de Ligação/genética , Estrutura Molecular , Ácidos Fosfatídicos/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/química , Plantas/genética , Ligação Proteica
15.
Nanoscale Res Lett ; 13(1): 95, 2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29637317

RESUMO

Nowadays, due to a wide range of applications of nanoparticles (NPs) in many industrial areas, accumulations of those entities in environment pose a great risk. Owing to their inertness, noble metal NPs may remain in contaminated soils nearly unchanged for long time. Within this context, size-, shape-, and concentration-dependent uptake of particles by plants belongs to unexplored area. In this work, we present water solutions of biologically friendly synthesized spherical AuNPs with pretty narrow size distribution in size range from 10 to 18 nm. Their thorough characterization by atomic absorption spectroscopy, mass spectroscopy-equipped inductively coupled plasma, dynamic light scattering (DLS), and TEM methods was followed by the study of their effect on the growth of Arabidopsis thaliana (primary and lateral roots), in particle size- and concentration-dependent manner. Due to strictly round-shape form of AuNPs and absence of particle agglomeration, DLS-derived size and size distribution were in good concordance with those obtained from TEM. The length and number of A. thaliana lateral roots were significantly affected by all types of AuNPs. Smallest AuNPs at highest concentration inhibited length of primary roots and, in contrast, enhanced hair root growth.

16.
Ann Bot ; 121(2): 297-310, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29300825

RESUMO

Background and Aims: The non-specific phospholipase C (NPC) is a new member of the plant phospholipase family that reacts to abiotic environmental stresses, such as phosphate deficiency, high salinity, heat and aluminium toxicity, and is involved in root development, silicon distribution and brassinolide signalling. Six NPC genes (NPC1-NPC6) are found in the Arabidopsis genome. The NPC2 isoform has not been experimentally characterized so far. Methods: The Arabidopsis NPC2 isoform was cloned and heterologously expressed in Escherichia coli. NPC2 enzyme activity was determined using fluorescent phosphatidylcholine as a substrate. Tissue expression and subcellular localization were analysed using GUS- and GFP-tagged NPC2. The expression patterns of NPC2 were analysed via quantitative real-time PCR. Independent homozygous transgenic plant lines overexpressing NPC2 under the control of a 35S promoter were generated, and reactive oxygen species were measured using a luminol-based assay. Key Results: The heterologously expressed protein possessed phospholipase C activity, being able to hydrolyse phosphatidylcholine to diacylglycerol. NPC2 tagged with GFP was predominantly localized to the Golgi apparatus in Arabidopsis roots. The level of NPC2 transcript is rapidly altered during plant immune responses and correlates with the activation of multiple layers of the plant defence system. Transcription of NPC2 decreased substantially after plant infiltration with Pseudomonas syringae, flagellin peptide flg22 and salicylic acid treatments and expression of the effector molecule AvrRpm1. The decrease in NPC2 transcript levels correlated with a decrease in NPC2 enzyme activity. NPC2-overexpressing mutants showed higher reactive oxygen species production triggered by flg22. Conclusions: This first experimental characterization of NPC2 provides new insights into the role of the non-specific phospholipase C protein family. The results suggest that NPC2 is involved in the response of Arabidopsis to P. syringae attack.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/microbiologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/fisiologia , Pseudomonas syringae , Fosfolipases Tipo C/fisiologia , Arabidopsis/enzimologia , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Complexo de Golgi/enzimologia , Microscopia Confocal , Fosfatidilcolinas/metabolismo , Doenças das Plantas/imunologia , Protoplastos/enzimologia , Espécies Reativas de Oxigênio , Reação em Cadeia da Polimerase em Tempo Real , Fosfolipases Tipo C/genética
17.
Steroids ; 117: 16-24, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27913097

RESUMO

Using Brassica napus roots we observed statistically significant increase in alternative respiratory pathway in response to exogenous 24-epibrassinolide (EBL) under optimal conditions and salinity. Also we observed activation of phospholipid signaling under the same conditions in response to EBL by measuring levels of lipid second messengers - diacylglycerol (DAG) and phosphatidic acid (PA). We found that brassinosteroids cause closure of stomata in isolated leaf disks while inhibitors of alternative oxidase cancelled these effects. This study demonstrates that BRs activate total respiration rate, alternative respiratory pathway, production of PA and DAG, stimulate stomata closure and growth under optimal conditions and salinity. Also, specific inhibitor of brassinosteroids biosynthesis decreased alternative respiratory pathway and production of lipid messengers in rape plants.


Assuntos
Brassica napus/metabolismo , Brassinosteroides/farmacologia , Esteroides Heterocíclicos/farmacologia , Brassica napus/efeitos dos fármacos , Brassica napus/enzimologia , Diglicerídeos/metabolismo , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Ácidos Fosfatídicos/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/enzimologia , Estômatos de Plantas/metabolismo
18.
Front Plant Sci ; 6: 928, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26581502

RESUMO

The Arabidopsis non-specific phospholipase C (NPC) protein family is encoded by the genes NPC1 - NPC6. It has been shown that NPC4 and NPC5 possess phospholipase C activity; NPC3 has lysophosphatidic acid phosphatase activity. NPC3, 4 and 5 play roles in the responses to hormones and abiotic stresses. NPC1, 2 and 6 has not been studied functionally yet. We found that Arabidopsis NPC1 expressed in Escherichia coli possesses phospholipase C activity in vitro. This protein was able to hydrolyse phosphatidylcholine to diacylglycerol. NPC1-green fluorescent protein was localized to secretory pathway compartments in Arabidopsis roots. In the knock out T-DNA insertion line NPC1 (npc1) basal thermotolerance was impaired compared with wild-type (WT); npc1 exhibited significant decreases in survival rate and chlorophyll content at the seventh day after heat stress (HS). Conversely, plants overexpressing NPC1 (NPC1-OE) were more resistant to HS compared with WT. These findings suggest that NPC1 is involved in the plant response to heat.

19.
Plant Signal Behav ; 10(6): e1031938, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26024014

RESUMO

The first indication of the aluminum (Al) toxicity in plants growing in acidic soils is the cessation of root growth, but the detailed mechanism of Al effect is unknown. Here we examined the impact of Al stress on the activity of non-specific phospholipase C (NPC) in the connection with the processes related to the plasma membrane using fluorescently labeled phosphatidylcholine. We observed a rapid and significant decrease of labeled diacylglycerol (DAG), product of NPC activity, in Arabidopsis seedlings treated with AlCl3. Interestingly, an application of the membrane fluidizer, benzyl alcohol, restored the level of DAG during Al treatment. Our observations suggest that the activity of NPC is affected by Al-induced changes in plasma membrane physical properties.


Assuntos
Alumínio/farmacologia , Arabidopsis/enzimologia , Membrana Celular/metabolismo , Fosfolipases Tipo C/metabolismo , Arabidopsis/efeitos dos fármacos , Álcool Benzílico/farmacologia , Compostos de Boro/metabolismo , Membrana Celular/efeitos dos fármacos , Diglicerídeos/metabolismo , Íons , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo
20.
Front Plant Sci ; 6: 66, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25763003

RESUMO

Aluminum ions (Al) have been recognized as a major toxic factor for crop production in acidic soils. The first indication of the Al toxicity in plants is the cessation of root growth, but the mechanism of root growth inhibition is largely unknown. Here we examined the impact of Al on the expression, activity, and function of the non-specific phospholipase C4 (NPC4), a plasma membrane-bound isoform of NPC, a member of the plant phospholipase family, in Arabidopsis thaliana. We observed a lower expression of NPC4 using ß-glucuronidase assay and a decreased formation of labeled diacylglycerol, product of NPC activity, using fluorescently labeled phosphatidylcholine as a phospholipase substrate in Arabidopsis WT seedlings treated with AlCl3 for 2 h. The effect on in situ NPC activity persisted for longer Al treatment periods (8, 14 h). Interestingly, in seedlings overexpressing NPC4, the Al-mediated NPC-inhibiting effect was alleviated at 14 h. However, in vitro activity and localization of NPC4 were not affected by Al, thus excluding direct inhibition by Al ions or possible translocation of NPC4 as the mechanisms involved in NPC-inhibiting effect. Furthermore, the growth of tobacco pollen tubes rapidly arrested by Al was partially rescued by the overexpression of AtNPC4 while Arabidopsis npc4 knockout lines were found to be more sensitive to Al stress during long-term exposure of Al at low phosphate conditions. Our observations suggest that NPC4 plays a role in both early and long-term responses to Al stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...